The Online Materials Information Resource

MatWeb, the **FREE** materials information database with data on **26,071 materials** including metals, plastics, ceramics, and composites.

Quick Search By Keyword:

Find!

Titanium Ti-6Al-4V (Grade 5), STA Bar

Search By:

Material Type

Trade Name

Manufacturer

Property

Metal

Composition

Printer friendly versi

Subcategory: Alpha/Beta Titanium Alloy; Metal; Nonferrous Metal; Titanium Alloy

Close Analogs: 4 other heat treatments of this alloy are listed in MatWeb.

Key Words: Ti-6-4; UNS R65400; ASTM Grade 5 titanium; UNS R56401 (ELI); Ti6Al4V, biomaterials, biomedical implants, biocompatibility

Services:	Component	Wt. %
Advertising	Al	6
Submit Data	Fe	Max 0.25
Database	Ο	Max 0.2
Licensing Web Design & Hosting	Ti	90
	V	4

Other Resources:

Unit Converter

Weight Calculator Search Help

Supplier List Useful Links

What's New

Wildt 5 New

Further Study

Contact Us

Site Map

Material Notes:

Dhysical Branartics

Information provided by Allvac and the references. Solution Treated 900-955°C, Aged 540°C. Alpha-Beta Alloy

Applications: Blades, discs, rings, airframe, fasteners, components. Vessels, cases, hubs, forgings.. Biomedical implants.

Biocompatibility: Excellent, especially when direct contact with tissue or bone is required. Ti-6Al-4V's poor shear strength makes it undesirable for bone screws or plates. It also has poor surface wear properties and tends to seize when in sliding contact with itself and other metals. Surface treatments such as nitriding and oxidizing can improve the surface wear properties.

Click here to view available vendors for this material.

N/1 - 41/	M-L	Home

-	rnysical Properties	Wetric	English	Comments
	Density	4.43 g/cc	0.16 lb/in³	
Λ	Mechanical Properties			
F	Hardness, Brinell	360	360	Estimated from Rockwell C.
F	Hardness, Knoop	392	392	Estimated from Rockwell C.
H	Hardness, Rockwell C	39	39	
F	Hardness, Vickers	376	376	Estimated from Rockwell C.
F	Hardness, Knoop Hardness, Rockwell C	392 39	392 39	C. Estimated from Rockwell C. Estimated from Rockwell

1 of 3 3/14/2002 4:17 PM

Tensile Strength, Ultimate	1035 MPa	150000 psi	
Tensile Strength, Yield	965 MPa	140000 psi	
Elongation @ break	8 %	8 %	
Reduction of Area	50 %	50 %	
Modulus of Elasticity	114 GPa	16500 ksi	Average of tension and compression
Compressive Yield Strength	1070 MPa	155000 psi	
Poisson's Ratio	0.33	0.33	
Fatigue Strength	700 MPa	102000 psi	Smooth, 10,000,000 Cycles
Shear Modulus	44 GPa	6380 ksi	
Electrical Properties			
Electrical Resistivity	0.000178 ohm-cm	0.000178 ohm-cm	
Magnetic Permeability	1.00005	1.00005	at 1.6 kA/m
Magnetic Susceptibility	0.0000033	0.0000033	cgs/g
Thermal Properties			
CTE, linear 20°C	8.6 µm/m-°C	4.78 μin/in-°F	20-100°C
CTE, linear 250°C	9.2 μm/m-°C	5.11 μin/in-°F	Average over the range 20-315°C
CTE, linear 500°C	9.7 μm/m-°C	5.39 μin/in-°F	Average over the range 20-650°C
Heat Capacity	0.5263 J/g-°C	0.126 BTU/lb-°F	
Thermal Conductivity	6.7 W/m-K	46.5 BTU-in/hr-ft²-°F	
Melting Point	Max 1660 °C	Max 3020 °F	Liquidus
Solidus	1604 °C	2920 °F	
Liquidus	1660 °C	3020 °F	
Beta Transus	980 °C	1800 °F	

Printer friendly version

References for this datasheet.

Some of the values displayed above may have been converted from their original units and/or rounded in order to display the information in a consistant format. Users requiring more precise data for scientific or engineering calculations can click on the property value to see the original value as well as raw conversions to equivalent units. We advise that you only use the original value or one of its raw conversions in your calculations to minimize rounding error. We also ask that you refer to Matweb's disclaimer and terms of use regarding this information. Click here to view all the property values for this datasheet as they were originally entered into Matweb.

2 of 3 3/14/2002 4:17 PM